• 1
  • 2
  • 3

keynote speakers

Keynote Speaker I

Prof. Jing Wang

University of South Florida, USA


Dr. Jing Wang is currently an Associate Professor in the Department of Electrical Engineering at University of South Florida. He received two M.S. degrees from the University of Michigan, one in electrical engineering (2000), the other in mechanical engineering (2002), and a Ph.D. degree from University of Michigan in 2006. His research interests include micro/nanofabrication technologies, functional nanomaterials, micromachined sensors and actuators, RF/Microwave/THz devices. He has published more than 90 peer-reviewed journal and conference papers, while serving as reviewer for more than a dozen journals. His work has been funded by research grants from federal agencies (NSF, DTRA, US Army, US Air force) and contracts from more than a dozen companies. He is the chairperson for IEEE MTT/AP/ED Florida West Coast Section and he is also the faculty advisor for Florida IMAPS, AVS and IMS student chapters. He was elected as a member the prestigious IEEE MTT Technical Committee on RF MEMS topics. He currently acts as the general co-chair for the IEEE Wireless and Microwave Technology Conference (WAMICON 2015).

Director of RF MEMS Transducers Lab
Chair of IEEE Florida West Coast MTT/AP/ED Chapter
Member of the IEEE Technical Committee MTT-21

Research Interests: Nano/microfabrication, nanomaterials, RF MEMS devices, on-chip power generation, microfluidics, MEMS transducers, RF integrated circuit, wide bandgap materials, polymer nanocomposite and responsive polymers.

Keynote Speaker II

Prof. Wenzhi Fu

Jilin University, China


Wenzhi Fu,Professor of Jilin University, doctoral tutor. Engaged in teaching and scientific research for more than 30 years, mainly engaged in multi-point forming technology, flexible stretch forming technology, flexible rolling technology and flexible coil technology research.
In recent years, he has undertaken or participated in many national, provincial and ministerial projects, and actively undertakes or participates in national key projects, such as the flexible stretching and forming equipment for a certain type of aircraft skin and the multi-point forming equipment for the outer deck of a large-scale surface warship. The research and development project also participated in the development project of the forming equipment for the exterior decoration of Korean special-shaped buildings as the main force, and solved the problem of flexible forming of the three-dimensional curved parts of large-scale plates in several national key projects. He has published more than 100 academic papers, including 5 Sci searches, 25 EI searches, and 15 invention patents such as “multi-point forming press”. “Key technology and equipment for multi-point forming of large-scale irregular space surface parts and its application” won the second prize of National Science and Technology Progress Award in 2009; “Plate Multi-Point Forming Device” won the 2010 China Patent Gold Award; “Flexible Stretching of Large Surfaces” The forming principle, key technologies and equipment won the first prize of the 2012 Jilin Science and Technology Invention. In 2010, it was rated as one of the top 100 outstanding science and technology workers in Changchun City. In 2012, it was awarded the 12th batch of young and middle-aged professional and technical talents with outstanding contributions in Jilin Province.

Keynote Speaker III

Prof. Tjokorda Gde Tirta Nindhia
Udayana University, Indonesia


Tjokorda Gde Tirta Nindhia received Doctor Degree from Gadjah Mada University (UGM) Yogyakarta, Indonesia on August 2003, with major field of study was Material Engineering. He participated in various international research collaborations such as with Muroran Institute of Technology Japan (2004), Toyohashi University of Technology Japan (2006), Leoben Mining University Austria (2008-2009), Technical University of Vienna Austria (2010), Institute Chemical technology of Prague Czech Republic (2012-now) and very recently with Michigan State University (MSU) and University of Hawaii in the USA under Fulbright Scholarship. His current job is as Full Professor in the field of Material Engineering at Engineering Faculty, Udayana University, Jimbaran, Bali, Indonesia. His research interest covers subjects such as, Biomedical Engineering, biosensor, biomaterial, waste recycle, failure analyses, advance ceramic, metallurgy, composite, renewable energy, and environmental friendly manufacturing.


Keynote Speaker IV

Assoc. Prof. Ouyang Jianyong

Department of Materials Science and Engineering, National University of Singapore, Singapore/

Stanford University, USA


Research Interests
1. Energy Materials and Devices
I am interested to the energy conversion and energy storage. The energy conversion includes low-cost solar cells, such as polymer solar cells and dye-sensitized solar cells, and electrocatalysis. I am also interested to develop high-performance materials for energy storage. My lab achieved the highest photovoltaic efficiencies for dye-sensitized solar cells with carbon nanotubes and graphene as the counter electrode.
2. Nanometer Materials and Devices
My interests on nanometer materials include the development, processing and application of functional nanometer materials, such as carbon nanotubes, graphene, polymer/nanoparticle memory devices, and antibacterial nanocoating. Recently, we developed methods to directly deposit nanostructured metals on substrates through the chemical reduction of metal precursors.
3. Organic Electronic Materials and Devices
Organic electronic devices, including light-emitting diodes, photovoltaic cells, and field-effect transistors, have many important applications are regarded as the next-generation electronic devices due to their low fabrication cost and high mechanical flexibility. I am interested to the development of high-performance organic electronic materials and devices, including conducting polymers, conjugated polymers and organic molecules, photovoltaic cells and light-emitting diodes. We recently developed approaches to develop highly transparent and highly conductive polymer films. The polymer films have transparency and conductivity like indium tin oxide (ITO), the traditional transparent electrode material for optoelectronic devices.

Ph.D. (Solid State Chemistry), Institute for Molecular Science, Graduate University for Advanced Studies, Japan, 1999
M.S. (Physical Chemistry), Institute of Chemistry, Chinese Academy of Sciences, China, 1996
B.Sc. (Chemistry), Tsinghua University, Beijing, China, 1993


Invited Speaker

Prof. Arcady Zhukov
University of Basque Country, Spain


Arcady Zhukov is an Ikerbasque Research professor at the University of Basque Country, Spain. He was graduated in 1980 from the Moscow Steel and Alloys Institute (presently National University of Science and Technology). In 1988 he received Ph.D. degree from the Institute of Solid State Physics of the Russian Academy of Science, in 2010- Doctor of Science (habilitation) in Moscow State “Lomonosov” University. After postdoctoral stay at the Insituto de Magnetismo Aplicado, he obtained a Ramón y Cajal Fellowship and permanently joined the Ikerbasque in 2011. Fields of interest: amorphous and nanostructured magnetic materials, giant magnetoimpedance, giant magnetoresistance, sensors. He has published above 500 papers and 4 books (H-index = 43). Zhukov can be reached by email at arkadi.joukov@ehu.es.